Definición de variable aleatoria – Qué es, Significado y Concepto

Variable aleatoria Uno variable es un símbol que actúa sobre funciones, fórmulas, algoritmos y proposiciones de las matemáticas y la estadística. Según sus características, las variables se clasifican de forma distinta.

Se llama variable aleatoria (o Estocástico) al función qué premios posibles eventos a números reales (figuras), cuyos valores se miden en experimentos tipo aleatoria. Estos valores posibles representan los resultados de experimentos no ejecutados o cantidades inciertas.

Cabe destacar que los experimentos aleatorizados son aquéllos que, desarrollados en las mismas condiciones, pueden ofrecer resultados diferentes. Lanzar una moneda en el aire para ver si sale cara a cara o seca es uno de estos experimentos género.

La variable aleatoria, en resumen, permite ofrecer una descripción del oportunidad que algunos son adoptados valores. No se sabe exactamente qué valor va a tomar la variable cuando se determina o mide, pero sí se puede saber cómo se distribuyen las probabilidades asociadas a los valores posibles. Esta distribución está influenciada por la aleatoria.

Se conoce como distribución de probabilidad, en el contexto de la probabilidad y la estadística, a una función que asigna a cada uno de los eventos definidos sobre una variable aleatoria un valor que denota la probabilidad de que se produzca el evento que representa. Para definirlo partimos del conjunto de todos los eventos, cada uno de los cuales es el rango de la variable en cuestión.

Desde una perspectiva teórica formal, las variables aleatorias son funciones definidas en a un espacio de probabilidad (también llamado espacio probabilístico), un concepto de matemáticas que moldea un experimento aleatorio determinado. Normalmente, un espacio de probabilidad tiene los tres componentes siguientes:

* primero, un conjunto llamado espacio de muestraque reúne todos los resultados posibles del experimento, que se conocen como eventos elementales;

Variable aleatoria* el grupo de todos los eventos aleatorios. Se llama la pareja formada por este componente y la anterior medir el espacio;

* finalmente, uno medida de probabilidad que determina la probabilidad de que cada uno éxito se producen y esto sirve para verificar el cumplimiento Los axiomas de Kolmogorov.

Los axiomas de Kolmogorov se resumen a continuación: la certeza de que el espacio experimento de muestra aleatoria; para determinar la probabilidad de un suceso, se asigna un número entre 0 y 1; si estamos ante eventos mutuamente exclusivos, la suma de sus probabilidades es igual a la probabilidad de que se produzca uno. Los eventos o eventos mutuamente exclusivos, en cambio, son aquellos que no pueden ocurrir simultáneamente.

Las variables aleatorias discretas son aquellos cuyo rango consiste en un número finito de elementos o cuyos elementos pueden enumerarse en secuencia. Supongamos un persona lanza un dado tres veces: los resultados son variables aleatorias discretas, ya que los valores de 1 en el 6.

En cambio, el variable aleatoria continua está vinculado a una ruta o intervalo que cubre, a teoríatodos los números reales, aunque sólo sea accesible un número determinado de valores (como la altura de un grupo de personas).

Este concepto también se utiliza en programación, donde existe un límite claro al rango de elementos posibles, puesto que depende de la memoria, que es finita. Cuanto más espacio disponible para el distribución de probabilidad y de la complejidad que pueden tener los eventos, más realista será la simulación. Una de las áreas donde la variable aleatoria puede ser útil es la animación de personajes en tiempo real, donde un modelo tridimensional está pensado para reaccionar y relacionarse con el entorno de forma realista mientras es controlado por un humano.

¿Que te ha parecido?

Deja un comentario